KTU Students

CYL	ENGINEERING CHEMISTRY LAB	CATEGORY	L	T P		CREDIT	
120		BSC	0	0	2	1	

Preamble: To impart scientific approach and to familiarize with the experiments in chemistry relevant for research projects in higher semesters

Prerequisite: Experiments in chemistry introduced at the plus two levels in schools

Course outcomes: After the completion of the course the students will be able to

CO 1	Understand and practice different techniques of quantitative chemical analysis to							
	generate experimental skills and apply these skills to various analyses							
CO 2	Develop skills relevant to synthesize organic polymers and acquire the practical skill to							
	use TLC for the identification of drugs							
CO 3	Develop the ability to understand and explain the use of modern spectroscopic							
	techniques for analysing and interpreting the IR spectra and NMR spectra of some							
	organic compounds							
CO 4	Acquire the ability to understand, explain and use instrumental techniques for chemical							
	analysis							
CO 5	Learn to design and carry out scientific experiments as well as accurately record and							
	analyze the results of such experiments							
CO 6	Function as a member of a team, communicate effectively and engage in further							
	learning. Also understand how chemistry addresses social, economical and							
	environmental problems and why it is an integral part of curriculum							

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
						75-		711		10	11	12
CO 1	3				2							3
CO 2	3				3							3
CO 3	3				3	-(1)						3
CO 4	3				3							3
CO 5	3				1							3
CO 6	3				1							3

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment/Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks
End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS (MINIMUM 8 MANDATORY)

- 1. Estimation of total hardness of water-EDTA method
- 2. Potentiometric titration
- 3. Determination of cell constant and conductance of solutions.
- 4. Calibration of pH meter and determination of pH of a solution
- 5. Estimation of chloride in water
- 6. Identification of drugs using TLC
- 7. Determination of wavelength of absorption maximum and colorimetric estimation of Fe³⁺ in solution
- 8. Determination of molar absorptivity of a compound (KMnO₄ or any water soluble food colorant)
- 9. Synthesis of polymers (a) Urea-formaldehyde resin (b) Phenol-formaldehyde resin
- 10. Estimation of iron in iron ore
- 11. Estimation of copper in brass
- 12. Estimation of dissolved oxygen by Winkler's method
- 13. (a) Analysis of IR spectra (minimum 3 spectra) (b) Analysis of ¹H NMR spectra minimum 3 spectra)
- 14. Flame photometric estimation of Na⁺ to find out the salinity in sand
- 15. Determination of acid value of a vegetable oil
- 16. Determination of saponification of a vegetable oil

Reference Books

- 1. G. Svehla, B. Sivasankar, "Vogel's Qualitative Inorganic Analysis", Pearson, 2012.
- 2. R. K. Mohapatra, "Engineering Chemistry with Laboratory Experiments", PHI Learning, 2017.
- 3. Muhammed Arif, "Engineering Chemistry Lab Manual", Owl publishers, 2019.
- 4. Ahad J., "Engineering Chemistry Lab manual", Jai Publications, 2019.
- 5. Roy K Varghese, "Engineering Chemistry Laboratory Manual", Crownplus Publishers, 2019.
- 6. Soney C George, Rino Laly Jose, "Lab Manual of Engineering Chemistry", S. Chand & Company Pvt Ltd, New Delhi, 2019.