KTU Students

PHL	ENGINEERING	CATEGORY	L	T	Р	CREDIT	YEAR OF
120	PHYSICS LAB						INTRODUCTION
		BSC	0	0	2	1	2019

Preamble: The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and to develop practical applications of engineering materials and use the principle in the right way to implement the modern technology.

Prerequisite: Higher secondary level Physics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Apply modern instruments like CRO, strain gauge to measure the basic physical quantities						
	viz. frequency and amplitude of a wave pattern, strain etc.						
	Carryout measurement of wave pattern in a stretched string and the corresponding						
	frequency values using a Melde's string apparatus.						
CO 2	Determine the wavelength of monochromatic beam of light and thickness of micro-thin						
	object etc. by forming Newton's rings pattern and an air wedge fringe pattern.						
CO 3	Carryout the measurement of wavelength by diffraction of plane transmission grating and						
	the spectra formed by a monochromatic beam of light and a laser.						
CO 4	Determine the wavelength of a laser beam using the plane transmission						
	grating. Measurement of numerical aperture of an optic fibre and evaluate the properties of						
	a solar cell and LED through itsI-Vcharacteristics.						
CO 5	Determine the velocity of ultrasonic waves in liquid using ultrasonic						
	diffractometer.Compare the magnetic moment of various magnets and determine the						
	magnetic flux density using deflection/vibration Magnetometer.						

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3				2			1	2			1
CO 2	3				2			1	2			1
CO 3	3				2			1	2			1
CO 4	3				2	200		1	2			1
CO 5	3				2			1	2			1

Mark distribution

Total Marks	CIE ESE		ESE			
	Marks	Marks	Duration(Internal)			
100	100	-	1 hour			

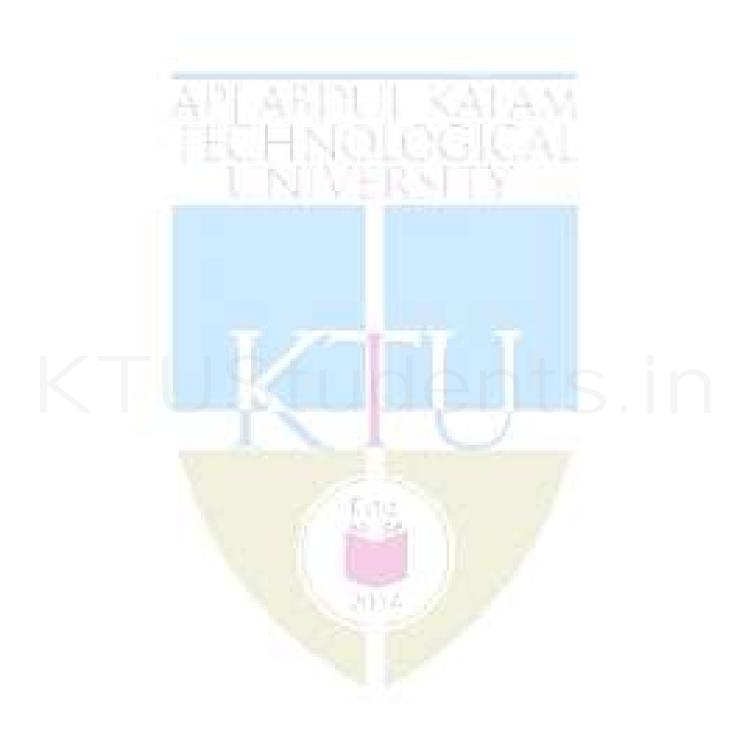
Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment/Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS


(Minimum 8 experiments should be completed)

- 1. CRO-Measurement of frequency and amplitude of wave forms
- 2. Measurement of strain using strain gauge and wheatstone bridge
- 3. LCR Circuit Forced and damped harmonic oscillations
- 4. Melde's string apparatus- Measurement of frequency in the transverse and longitudinal mode
- 5. Wave length measurement of a monochromatic source of light using Newton's Rings method.
- 6. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
- 7. To measure the wavelength using a millimeter scale as a grating.
- 8. Measurement of wavelength of a source of light using grating.
- 9. Determination of dispersive power and resolving power of a plane transmission grating
- 10. Determination of the particle size of lycopodium powder
- 11. Determination of the wavelength of He-Ne laser or any standard laser using diffraction grating
- 12. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 13.I-V characteristics of solar cell.
- 14.LED Characteristics.
- 15. Ultrasonic Diffractometer- Wavelength and velocity measurement of ultrasonic waves in a liquid
- **16.** Deflection magnetometer-Moment of a magnet- Tan A position.

Reference books

- 1. S.L.Gupta and Dr.V.Kumar, "Practical physics with viva voice", Pragati PrakashanPublishers, Revised Edition, 2009
- 2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S.Chand&Co,2008

- 3. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014
- 4. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.

