CODE	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
EET435	RENEWABLE ENERGY SYSTEMS	OEC	2	1	0	3

Preamble: Objective of this course is to inculcate in students an awareness of new and renewable energy sources.

Prerequisite: Students who have taken EET383 MINOR are not eligible to take this course.

Course Outcomes: After the completion of the course the student will be able to

CO 1 Choose the appropriate energy source depending on the available resources.						
CO 2	Explain the concepts of solar thermal and solar electric systems.					
CO 3	Illustrate the operating principles of wind, and ocean energy conversion systems.					
CO 4	Outline the features of biomass and small hydro energy resources					
CO 5	Describe the concepts of fuel cell and hydrogen energy technologies					

Mapping of course outcomes with program outcomes

	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	2					1	2					
CO 2	3											
CO 3	3		\sim			1	1					
CO 4	3					1	1					
CO 5	3			2								

Assessment Pattern

Bloom's Category	Continuous Te		End Semester Examination
		2	
Remember	25	25	50
Understand	20	20	40
Apply	5	5	10
Analyse	20	14	
Evaluate			
Create			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have a maximum of 2 subdivisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Write short notes on the advantages and disadvantages of any three types of non conventional energy sources.(K1, PO1)
- 2. What are the points to be considered while constructing a house for energy efficiency? (K2, PO1, PO6, PO7)

Course Outcome 2 (CO2)

- 1. Explain construction of solar flat plate collector with a neat diagram. (K2, PO1)
- 2. Draw the block diagram of a solar thermal electric plant and explain its working. (K1, PO1)
- 3. Discuss the effect of temperature and insolation on the characteristics of solar cell. Draw the P-V characteristics of Solar cell under varying temperature and irradiation level. (K3, PO1)

Course Outcome 3 (CO3):

- 1. Derive the expression for power in the wind turbine. (K1, PO1, PO6, PO7)
- 2. Classify tidal power plants and brief explain any two of them. (K1, PO1, PO6, PO7)
- 3. With the help of a block diagram explain the working of a hybrid OTEC. (K2, PO1, PO6, PO7)

Course Outcome 4 (CO4):

- 1. What are the factors that affect biogas generation? (K1, PO1, PO6, PO7)
- 2. Compare the construction and performance of floating drum type and fixed dome type biogas plants with the help of neat sketches. (K2, PO1, PO6, PO7)
- 3. Discuss the selection criteria of turbines for a small hydro project. (K1, PO1, PO6, PO7)

Course Outcome 5 (CO5):

- 1. What is small hydro power? How is it classified? Obtain an expression for the power that can be generated from a small hydro power station. (K1, PO1)
- 2. Explain the hydrogen energy system with necessary diagram. (K2, PO1)
- 3. What do you mean by the conversion efficiency of a fuel cell? (K1, PO1)

Model Question Paper

Reg No.:

Total Pages:2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Name:

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: EET435

Course Name: RENEWABLE ENERGY SYSTEMS

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

- 1 Differentiate between flat plate collectors and solar concentrators.
- 2 Discuss advantages and limitations of conventional energy sources.
- 3 With the help of a block diagram explain the working of a hybrid OTEC.
- 4 List out the advantages and disadvantages of a tidal power plant.
- 5 Discuss the different types of wind turbine rotors used to extract wind power.
- 6 The Danish offshore wind farm has a name plate capacity of 209.3 MW. As of January 2017 it has produced 6416 GWh since its commissioning 7.3 years ago. Determine the capacity factor of above wind farm.
- 7 What are the factors that affect biogas generation
- 8 Discuss the process of biomass to ethanol conversion
- 9 What are the components of micro hydel power plant.
- 10 Enumerate the design and selection of different types of turbines used for small hydro plants

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

9	a)	With the aid of a neat diagram, explain the working of a central tower collector	(9)
		type solar thermal electric plant	
	b)	Define (i) Open Circuit Voltage (ii) Short circuit Current (iii) Fill factor and (iv)	(5)
		Efficiency of the solar cell	
10	a)	Compare the components and working of a standalone and grid con ected PV system	(5)
	b)	How energy resources are classified. Compare conventional and non conventional sources of energy resources	(9)
		Module 2	
11		What are the site selection criteria for OTEC? Draw the block diagram and	(14)
		explain the working of Anderson cycle based OTEC system. Explain how	
		biofouling affects efficiency of energy conversion and how can it be minimised?	
12		Explain the principle of operation of a tidal power plant. How it is classified?	(14)
		Draw the layout of a double basin tidal power plant and label all the	
		components.Explain the function of each component	
		Module 3	
13	a)	Prove that the maximum wind turbine output can be achieved when $V_d = \frac{1}{3}V_{zz}$	(10)
		$V_d = \frac{1}{3} V_u$, where $V_d V_d$ and $V_u V_u$ are down-stream and up-stream wind velocity	
		respectively	
	b)	What is pitch control of wind turbine? Explain.	(4)
14	a)	Determine the power output of a wind turbine whose blades are 12m in diameter and when the wind speed is $6m/s$, the air density is about $1.2kg/m^3$ and the maximum power coefficient of the wind turbine is 0.35.	(5)

b) Explain the parts, their function and working of a wind power plant. What are (9) the site selection criteria of a wind power plant?

Module 4

15	a)	With a neat schematic diagram , explain the biomass gasification based electric power generation system	(5)
	b)	Explain the how urban waste is converted into useful energy	(9)
16	a)	Compare the construction and performance of floating drum type and fixed dome type biogas plants with the help of neat sketches	(10)
	b)	Explain the importance of biomass programme in India Module 5	(4)
15	a)	Explain the operation of a phosphoric acid fuel cell with the help of a suitable diagram	(7)
	b)	What are the different methods used for the production and storage of hydrogen	(7)

- 16 a) Draw the layout of a mini hydro project and explain its working (7)
 - b) Describe the working and constructional features of PEM fuel cell (7)

Syllabus

Module 1

Introduction, Classification of Energy Resources- Conventional Energy Resources - Availability and their limitations- Non-Conventional Energy Resources – Classification, Advantages, Limitations; Comparison.

SOLAR THERMAL SYSTEMS- Principle of Conversion of Solar Radiation into Heat – Solar thermal collectors. – Flat plate collectors. Solar concentrators (parabolic trough, parabolic dish, Central Tower Collector).

SOLAR ELECTRIC SYSTEMS- Solar Thermal Electric Power Generation – Solar Photovoltaic – Solar Cell fundamentals - characteristics, classification, .construction. Solar PV Systems – stand-alone and grid connected- Applications .

Module 2

ENERGY FROM OCEAN- Ocean Thermal Energy Conversion (OTEC)- Principle of OTEC system- Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle. Site-selection criteria- Biofouling- Advantages & Limitations of OTEC.

2014

TIDAL ENERGY – Principle of Tidal Power- Components of Tidal Power Plant (TPP)-Classification-single basin- double basin types –Limitations -Environmental impacts.

Module 3

WIND ENERGY- Introduction- Basic principles of Wind Energy Conversion Systems (WECS) wind speed measurement-Classification of WECS- types of rotors. wind power equation -Betz limit. Electrical Power Output and Capacity Factor of WECS- Advantages and Disadvantages of WECS -site selection criteria.

Module 4

BIOMASS ENERGY- Introduction- Biomass fuels-Biomass conversion technologies -Urban waste to Energy Conversion- Biomass Gasification- Biomass to Ethanol Production- Biogas production from waste biomass- factors affecting biogas generation-types of biogas plants – KVIC and Janata model-Biomass program in India.

Module 5

SMALL HYDRO POWER- Classification as micro, mini and small hydro projects - Basic concepts and types of turbines- selection considerations.

EMERGING TECHNOLOGIES: Fuel Cell-principle of operation –classification- conversion efficiency and losses - applications .Hydrogen energy -hydrogen production -electrolysis - thermo chemical methods -hydrogen storage and utilization.

Text Books

- 1. G. D. Rai, "Non Conventional Energy Sources", Khanna Publishers, 2010.
- 2. Rao S. and B. B. Parulekar, Energy Technology, Khanna Publishers, 1999

Reference Books

- 1. G.N. Tiwari: Solar Energy-Fundamentals, Design, Modelling and Applications, Narosa Publishers, 2002
- 2. Earnest J. and T. Wizelius, Wind Power Plants and Project Development, PHI Learning, 2011.
- 3. Sab S. L., Renewable and Novel Energy Sources, MI. Publications, 1995.
- 4. Sawhney G. S., Non-Conventional Energy Resources, PHI Learning, 2012.
- 5. Tiwari G. N., Solar Energy- Fundamentals, Design, Modelling and Applications, CRC Press, 2002.
- 6. A.A.M. Saigh (Ed): Solar Energy Engineering, Academic Press, 1977
- 7. Abbasi S. A. and N. Abbasi, Renewable Energy Sources and Their Environmental Impact, Prentice Hall of India, 2001.
- Boyle G. (ed.), Renewable Energy Power for Sustainable Future, Oxford University Press, 1996

- 9. Earnest J. and T. Wizelius, Wind Power Plants and Project Development, PHI Learning, 2011.
- 10. F. Kreith and J.F. Kreider: Principles of Solar Engineering, McGraw Hill, 197
- 11. F. Kreith and J.F. Kreider: Principles of Solar Engineering, McGraw Hill, 1978 62.
- 12. Khan B.H, Non Conventional Energy resources Tata McGraw Hill, 2009.

Course Contents and Lecture Schedule

No	TECHNTOPIC LOGIC	No. of Lectures (35 hours)
1	INTRODUCTION (7 HOURS)	
1.1	Classification of Energy Resources- Conventional Energy - Resources - Availability and their limitations	1
1.2	Non-Conventional Energy Resources – Classification, Advantages, Limitations, Comparison.	1
1.3	SOLAR THERMAL SYSTEMS- Principle of Conversion of Solar Radiation into Heat – Solar thermal collectors.	1
1.4	Flat plate collectors. Solar concentrators (parabolic trough, parabolic dish, Central Tower Collector)	1
1.5	SOLAR ELECTRIC SYSTEMS- Solar Thermal Electric Power Generation	1
1.6	Solar Photovoltaic – Solar Cell fundamentals - characteristics, classification, construction.	1
1.7	Solar PV Systems - stand-alone and grid connected- Applications	1
2	ENERGY FROM OCEAN (7 hours)	
2.1	Ocean Thermal Energy Conversion (OTEC)- Principle of OTEC system-	1
2.2	Open Cycle (Claude cycle), Closed Cycle (Anderson cycle)	1
2.3	Hybrid cycle. Site-selection criteria	1
2.4	Biofouling- Advantages & Limitations of OTEC	1
2.5	TIDAL ENERGY – Principle of Tidal Power- Components of Tidal Power Plant (TPP)-	1
2.6	Classification-single basin- double basin types –Limitations and environmental impacts	2
3	WIND ENERGY (7 hours)	
3.1	Introduction- Basic principles of Wind Energy Conversion Systems (WECS)	1
3.2	Wind speed measurement	1

3.3	Classification of WECS- types of rotors	2						
3.4	Wind power equation -Betz limit	1						
3.5	3.5 Electrical Power Output and Capacity Factor of WECS							
3.6	Advantages and Disadvantages of WECS -site selection criteria							
4	4 BIOMASS ENERGY (6 hours)							
4.1	Urban waste to Energy Conversion							
4.2	Biomass Gasification- Biomass to Ethanol Production	[V]ı						
4.3	Biogas production from waste biomass	2						
4.4	Types of biogas plants – KVIC and Janata model							
4.5	Biomass program in India.	1						
5	SMALL HYDRO POWER (8 hours)							
5.1	Classification as micro, mini and small hydro projects	1						
5.2	Basic concepts and types of turbines- selection considerations.	2						
5.3	EMERGING TECHNOLOGIES: Fuel Cell-principle of operation	1						
5.4	Classification- conversion efficiency and losses - applications	1						
5.5	Hydrogen energy -hydrogen production	1						
5.6	5.6Electrolysis -thermo chemical methods5.7Hydrogen storage and utilization.							
5.7								

